Analysis of the promoter activities of the genes encoding three quinoprotein alcohol dehydrogenases in Pseudomonas putida HK5.

نویسندگان

  • Worrawat Promden
  • Alisa S Vangnai
  • Hirohide Toyama
  • Kazunobu Matsushita
  • Piamsook Pongsawasdi
چکیده

The transcriptional regulation of three distinct alcohol oxidation systems, alcohol dehydrogenase (ADH)-I, ADH-IIB and ADH-IIG, in Pseudomonas putida HK5 was investigated under various induction conditions. The promoter activities of the genes involved in alcohol oxidation were determined using a transcriptional lacZ fusion promoter-probe vector. Ethanol was the best inducer for the divergent promoters of qedA and qedC, encoding ADH-I and a cytochrome c, respectively. Primary and secondary C3 and C4 alcohols and butyraldehyde specifically induced the divergent promoters of qbdBA and aldA, encoding ADH-IIB and an NAD-dependent aldehyde dehydrogenase, respectively. The qgdA promoter of ADH-IIG responded well to (S)-(+)-1,2-propanediol induction. In addition, the roles of genes encoding the response regulators exaE and agmR, located downstream of qedA, were inferred from the properties of exaE- or agmR-disrupted mutants and gene complementation tests. The gene products of both exaE and agmR were strictly necessary for qedA transcription. The mutation and complementation studies also suggested a role for AgmR, but not ExaE, in the transcriptional regulation of qbdBA (ADH-IIB) and qgdA (AGH-IIG). A hypothetical scheme describing a regulatory network, which directs expression of the three distinct alcohol oxidation systems in P. putida HK5, was derived.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disruption of quinoprotein ethanol dehydrogenase gene and adjacent genes in Pseudomonas putida HK5.

Pseudomonas putida HK5 produces three different quinoprotein alcohol dehydrogenases: ADH-I, ADH-IIB and ADH-IIG. Gene organization of qedA, the gene for ADH-I, and other 10 genes in the cluster was related to the genome sequences of five other Pseudomonas strains. Insertion mutations in either qedA, exaE or agmR eliminated ADH-I activity, although the mutants were still able to grow on ethanol ...

متن کامل

Quinoprotein alcohol dehydrogenase from ethanol-grown Pseudomonas aeruginosa.

Cell-free extracts of Pseudomonas aeruginosa strains, grown on ethanol, showed dye-linked alcohol dehydrogenase activities. The enzyme responsible for this activity was purified to homogeneity. It appeared to contain two molecules of pyrroloquinoline quinone per enzyme molecule. In many respects, it resembled other quinoprotein alcohol dehydrogenases (EC 1.1.99.8), having a substrate specificit...

متن کامل

Functional Screening of Phosphatase-Encoding Genes from Bacterial Sources

Phosphatase (APase) enzymes including phytases have broad applications in diagnostic kits, poultryfeeds, biofertilizers and plant nutrition. Because of high levels of sequence diversity among phosphatases,an efficient functional screening method is a crucial requirement for the isolation of the encodinggenes. This study reports a functional cloning screening method for the iso...

متن کامل

Engineering thermal stability and solvent tolerance of the soluble quinoprotein PedE from Pseudomonas putida KT2440 with a heterologous whole‐cell screening approach

Due to their ability for direct electron transfer to electrodes, the utilization of rare earth metals as cofactor, and their periplasmic localization, pyrroloquinoline quinone-dependent alcohol dehydrogenases (PQQ-ADHs) represent an interesting class of biocatalysts for various biotechnological applications. For most biocatalysts protein stability is crucial, either to increase the performance ...

متن کامل

Isolation and characterization of an alcohol dehydrogenase gene from the octylphenol polyethoxylate degrader Pseudomonas putida S-5.

Octylphenol polyethoxylate (OPEO(n)) biodegradation by Pseudomonas putida S-5 under aerobic conditions is initiated by the oxidation of its terminal alcohol group by alcohol dehydrogenase. A DNA fragment, containing an alcohol dehydrogenase gene (adh1), was isolated using a combination of degenerate PCR and inverse PCR. The predicted translation product of adh1 showed significant sequence simil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 155 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2009